EXPANDED POLYSTYRENE

The Green Insulation Alternative

Provider: K 031 Course EPS 103 1 LU HSW/SD

AIA Continuing Education

Carlisle Construction Materials, Insulfoam, is a Registered Provider with the America Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available upon request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method of manner of handling, using distributing or dealing in any material or product.

Copyright Materials

This presentation is protected by USA and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the publisher is prohibited.

Copyright © 2012 Carlisle Construction Materials

The data contained in this publication is based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, this data does not relieve processor from carrying out their own investigations and tests. Neither does this data imply any guarantee for certain properties nor the suitability of the product for a specific purpose. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed. (August 2016)

Learning Objectives

- Define and understand how Expanded Polystyrene (EPS) is manufactured
- Learn about environmental features and benefits of EPS insulation including recyclability, LEED, thermal performance, energy efficiency, global warming reduction and mold resistance
- Understanding ASTM C578, Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation
- Understanding key physical properties of EPS: R-value, Compressive Strength, and Moisture Absorption
- Understand the different applications of EPS Roofing, Wall, Below Grade, Below Slab, Geofoam, Lightweight Void Fill and SIPs

Expanded Polystyrene Industry Alliance

- Helpful resource to help explain EPS in much greater detail
- www.EPSindustry.org

EPS Manufacturers

Many large and small manufacturers throughout North America produce EPS:

- Insulfoam
- Cellofoam
- Atlas
- Plastifab
- Carpenter
- ACH
- Many small local and regional companies

Expanded polystyrene (EPS) is a versatile, lightweight material that can be manufactured into a variety of products. EPS offers a high-performance, yet economical, solution for a wide variety of construction applications.

EPS is NOT Styrofoam®

It Starts with Expandable Polystyrene

Many types...

- Modified and unmodified
- Various pentane contents
- Various sizes
- End uses

The Process

State-of-the-Art Molding

Block size varies from 14-24 ft. tall

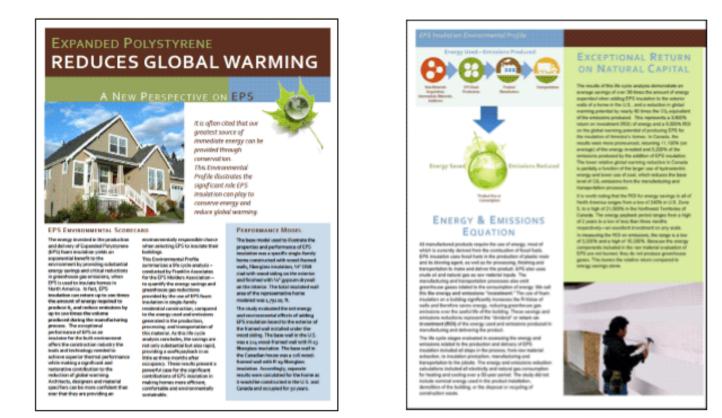
Computer Controlled Vacuum Molding

Cutting or "Slabbing"

Sustainability and Environmental Benefits

- Environmentally Friendly
- Contains no HCFCs or formaldehyde
- 100% recyclable from jobsites
- Manufacturing option: contains up to 25% recycled content
- Reduces global warming
- Contributes towards LEED Certification credits
- Manufacturing option: additives to resist insects and mold

Recyclability


- EPS can be removed off jobsites and may be used in future manufacturing as long as it is not contaminated
- Can be introduced into the manufacturing of new product or returned to a styrene resin

Expanded Polystyrene Reduces Global Warming

EPS insulation can return up to 200 times the amount of energy required to produce it, and reduce emissions by up to 100 times the volume produced during the manufacturing process.

Expanded Polystyrene Reduces Global Warming

- The use of foam insulation on a building significantly increases the R-Value of walls to save energy
- Lower residential energy use translates into fewer emissions and reduced GWP

Energy Savings Provided by		Ener	Millions Btu's				
Adding Exterior R-4 EPS Ins		EPS	8.90				
Single Family Home - U.S.			Transportal		0.13		
shight formy frome - 0.5.			Tota	Energy Im	rested	9.03	
Energy Savings (Millions Btu's)	Zone 1	Zone 2	Zo	ne 3	Zone 4	Zone 5	U.S. Average
Annual Energy Savings	11.37	9.58	1	7.84	5.58	5.00	6.58
Payback Period in Years	0.79	0.94		1.15	1.62	1.81	1.3)
Savings Over 50 Years	568	479	1000	392	279	250	329
But and the local state of the second	6 300	E 20E		341	2 000	3 760	3,64
	6,290	5,305			3,090	2,769	
Global Warming Potential (GWP) Red	ductions		GWF	Invested Production		lbs. CO2 Equiv
Global Warming Potential (Provided by Adding Exterio	GWP) Red	ductions		GWE	Invested		5,045 Ibs. CO2 Equiv 7.95 24
Global Warming Potential (Provided by Adding Exterio	GWP) Red	ductions		GWE EPS	Invested Production	tion	lbs. CO2 Equiv 7-9
Global Warming Potential (Provided by Adding Exterio Single Family Home - U.S.	GWP) Red	ductions	on	GWE EPS	Invested Production Transporta	tion	105. CO2 Equiv 7.95 24 815
Return on Investment (ROI%) Global Warming Potential (Provided by Adding Exterio Single Family Home - U.S. GWP Reductions Compared to Base Wall Annual Reductions	GWP) Rec r R-4 EPS	ductions i Insulation	on Zo	GWE EPS EPS Tota	Production Transporta I GWP Inve	tion	Ibs. CO2 Equiv 7-9 24 819 U.S. Average
Global Warming Potential (Provided by Adding Exterio Single Family Home - U.S. GWP Reductions compand to Base Will	GWP) Rec r R-4 EPS Zone 1	ductions i Insulatio Zone 2	on Zo	GWF EPS EPS Tota	Invested Production Transporta GWP Inve Zone 4	tion sted Zone 5	Ibs. CO2 Equiv 7-9: 24
Global Warming Potential (Provided by Adding Exterio Single Family Home - U.S. GWP Reductions Compared to Base Wall Annual Reductions	GWP) Rec r R-4 EPS Zone 1 1,669	ductions i Insulatio Zone 2 3,354	on Zo	GWF EPS EPS Tota ne 3 155	Production Transporta I GWP Inve Zone 4 831	tion sted Zone 5 777	U.S. Average

U.S. Model

USGBC and LEED

Materials and Resources (MR Credits)

MR Credit 2.1 & 2.2 – Construction Waste Management: Divert 20% or 75% from Disposal, 2 points possible MR Credit 3.1 & 3.2 – Materials Reuse: 5% or 10%, 2 points possible MR Credit 4.1 & 4.2 – Recycled Content: 10% or 20%, 2 points possible MR Credit 5.1 & 5.2 – Regional Materials, 2 points possible

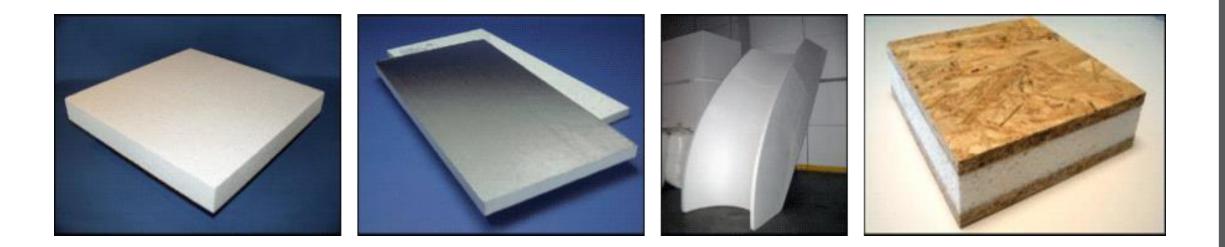
Sustainable Sites (SS Credits)

SS Credit 7.2 – Heat Island Effect Roof, 1 point possible

Energy and Atmosphere (EA Credits)

EA Credit 1 – Optimize Energy Performance, 10 points possible EA Credit 5 – Measurement & Verification, 1 point possible

EPS is Mold Resistant


EPS	Crofton, MD 21114 (800) 607-3772 emsteines@epscentral.org	
Molders Association		
FOR IMMEDIATE RELI	EASE	Contact: Deniz Carroll 800-607-3772
Те	sting Confirms EPS is Mol	Resistant
resistance. EPSMA contracte ASTM C1338 "Standard Meth	d SGS U.S. Testing Compar od for Determining Fungi Re test program was to provide	orogram focusing on EPS and mold by for test services on EPS using sistance of Insulation Materials and conclusive evidence that EPS does
		CAN/ULC S701, representing the ons, were submitted for testing.
The ASTM protocol subjected Aspergillus niger Aspergillus versicolor Penicilium funiculosu Chaetomium globosu Aspergillus flavus	m	×
The results show that in a lab expanded polystyrene sample		nditions, the fungi did not grow on the
home. In addition to mold res research study conducted by constructed with ICFs outpert heating and cooling costs. In value up to and beyond fifteer	stance, its energy efficiency NAHB Research Center. Re ormed wood frame homes sa other studies, EPS roof insul a years of use thus EPS can insulation does not emit vola	ving the homeowner 20 percent in ation retained its original insulating be specified without adjusting the R- file organic compounds (VOCs) during
depletion of the stratospheric	ozone layer. EPS manufactu	PS, and does not contribute to the rens recapture up to 95% of the alling state of the art emission
A technical bulletin from the E attached.	PS Molders Association on r	nold resistant expanded polystyrene is
	formation on EPS performan	vene manufacturers throughout the se in building and construction at 800-607-3772 or visit

www.epsmolders.org.

17

EPS Products

- Standard Unfaced
 - Flat, tapered, special shapes
- Laminated or Composites Faced
 - Flat Only

Standard EPS Products

The most R-value per dollar

Product Features:

10-60 psi Panels, blocks, custom shapes Flat or tapered Bevel or straight cut edges 3/8" – 40" thick

Manufacturing:

- May contain recycled content (depending on the spec) 100% recyclable
- Contains no HCFCs or dyes
- Energy Star & LEED compliant

Standard EPS

Typical Physical Properties										
Property	Type I	Type VIII	Type II	Type IX	Type XIV	Type XV	Test Method			
Nominal Density (pcf)	1.0	1.25	1.5	2.0	2.50	3.0	ASTM C303			
C-Value (Conductance) BTU/(hr•ft²•°F) @ 25° F (per inch) @ 40° F @ 75° F	.230 .240 .260	.220 .235 .255	.210 .220 .240	.200 .210 .230	0.198 0.206 0.222	0.196 0.198 0.217	ASTM C518 or ASTM C177			
R-Value (Thermal Resistance) (hr•ft ² •°F)/BTU (per inch) @ 25° F @ 40° F @ 75° F	4.35 4.17 3.85	4.55 4.25 3.92	4.76 4.55 4.17	5.00 4.76 4.35	5.05 4.85 4.50	5.10 5.05 4.60	ASTM C518 or ASTM C177			
Compressive Strength (psi, 10% deformation)	10 - 14	13 - 18	15 - 21	25 - 33	40	60	ASTM D1621			
Flexural Strength (min. psi)	25	30	35	50	60	75	ASTM C203			
Dimensional Stability (maximum %)	2%	2%	2%	2%	2.0	2.0	ASTM D2126			
Water Vapor Permeance (max. perm., 1 inch)	5.0	3.5	3.5	2.0	2.5	2.5	ASTM E96			
Water Absorption (max. % vol.)	4.0	3.0	3.0	2.0	2.0	2.0	ASTM C272			
Capillarity	none	none	none	none	none	none	-			
Flame Spread	< 20	< 20	< 20	< 20	< 20	< 20	ASTM E84			
Smoke Developed	150 - 300	150 - 300	150 - 300	150 - 300	150-300	150-300	ASTM E84			

*Properties are based on data provided by resin manufacturers, independent test agencies and Insulfoam

Standard EPS Application

- Below Grade
- Below Slab
- Radiant Floors
- Roofing
- Wall
- EIFS

Premium Faced – EPS Product faced, laminated

Enhanced job site handling, durability and moisture resistance and enhanced fire resistance.

Facers

Factory laminated polymeric facer

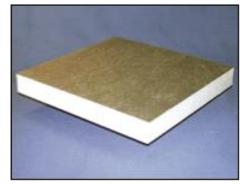
Fabric and foil facers

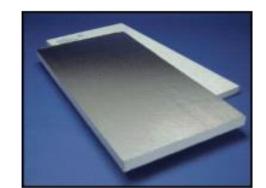
Coated glass facer fiber reinforced facer

Product

10-60 psi Panels, blocks, fanfold, snap feature, custom sizes 3/8" - 40" thick

Manufacturing


May contain recycled content depending on spec


EPS is 100% recyclable

Contains no HCFCs or dyes

Energy Star, LEED compliant

Premium Faced – EPS Application

- Below Grade Insulation
- Waterproofing Protection Board
- Below/Between Slab
- Cavity Well Insulation
- Sheathing
- Siding Underlayment
- Roofing Underlayment
- Radiant Heat Floors
- Pre-cast Wall Panels

Premium Faced – EPS Composites

• EPS can be bonded to a variety of other rigid products depending on the application

OSB or Plywood High Density Polysio Wood fiber or perlite Metal panels SIPs

 Offers labor savings, additional durability and enhanced performance

Premium EPS Composite Applications

- SIPs
- Steep slope roofing
- Wall
- High traffic roofing
- Severe hail zones

Physical Properties Composite EPS

- Higher compressive strengths
- Higher R-values
- Greater fire rating
- Greater hail and high traffic ratings
- Better moisture absorption

Codes and Compliances

- FM
- UL
- ASTM
- ICC ES
- IBC
- Miami Dade
- State of Florida
- Various Sate Approvals

ASTM C578

Designation: C 578 – 07

Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation¹

This standard is issued under the fixed designation C 578; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

- The industry's consensus standard for expanded and extruded polystyrene
- Establishes the minimum and/or maximums for assorted physical properties

ASTM C578

Designation: C 578 – 07

Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation¹

1. Scope

1.1 This specification² covers the types, physical properties, and dimensions of cellular polystyrene boards with or without facings or coatings made by molding (EPS) or extrusion (XPS) of expandable polystyrene. Products manufactured to this specification are intended for use as thermal insulation for temperatures from -65 to +165°F (-53.9 to +73.9°C). This specification does not apply to laminated products manufactured with any type of rigid board facer including fiberboard, perlite board, gypsum board, or oriented strand board.

ASTM C578

							4	C 5	78 -	09								
			TAB	LE1P	hysica	l Prop	erty Re	quiren	nents (of RCS	S The	rmal In	ulation					
Nore 1—The va The values for Typ kins-in-place, this Nore 2.—Type I Nore 2.—In add ± 2°F (43 ± 1°C) Nore 4.—For Ty roperty values sh Nore 5.—Values materials. Where 9 Nore 6.—Types	e XIII (conditi II has b ition to are pro pe XIII own for quoted valer va	properti on shall een dek the ther wided is , in add inform are mu por pen	es liste 1 be not read be mal res n X1.8 fition to ational retirium meance	d in th ied in t cause i istance for inf o the T purpos i vales is a de	is table he test t is no l values ormatio hermal es in To for 1.0 ssign is	must b report. longer : in Tabl a purpo resista able X1 0 in. G sue, co	e gener availabl e 1, val stes. nce pro .2 of A 25.4 m tsult m	e. ues at o perty re ppendio n) thick unufacto	nean le squiren c XI. c samp wer.	ial wid mperat wots si les wit	h the st tures of hown i h natu	erface sk 25 ± 2 n Table ral skins	F (-4 ± 1, there intact.1	red. W 1°C), - are Ap Lower	here pr 40 ± 2 parent values	rF (4 ± Therma will res	are test 1°C), i I Cond alt for	ed with and 110 activity thicker
Classification	Type XI	Type I	Type VIII	Type II	Type IX	Type XIV	Type XV	Type XII	Туре Х	Туре 8	Type XIII	Type IV	Type DX	Type VI	Type XIV	Type VII	Type XV	Type V
Compressive existance at yield or 10 % deformation, whichever occurs finst (with skins intact), min, poi (kPa) Thermal resistance of 1.00-in. (25.4-mm) hickses, min, FA ² -NB4. (Km ³ /	5.0 (35)	10.0 (69)	13.0 (90)	15.0 (104)	25.0 (173)	40.0 (276)	60.0 (414)	15.0 (104)	15.0 (104)	15.0 (104)	20.0 (130)	25.0 (173)	25.0 (173)	40.0 (276)	40.0 (276)	60.0 (414)	60.0 (414)	100.0 (690)
W) Mean temperature: 75 = 2°F (24 = 1°C) Floward strength, min, pei (kPa) Water vapor permeance of 1.00-in. (25.4- mm) thickness (See Note 5.), max, perm (ng/	3.1 (0.55) 10.0 (70) 5.0 (297)	25.0 (173) 5.0	3.8 (0.67) 30.0 (208) 3.5 (201)	4.0 (0.70) 36.0 (240) 3.5 (201)	4.2 (0.74) 50.0 (145) 2.5 (143)	4.2 (0.74) 60.0 (414) 2.5 (143)	4.3 (0.76) 75.0 (517) 2.5 (143)	4.6 (0.81) 40.0 (276) 1.5 (86)	5.0 (0.88) 40.0 (276) 1.5 (96)	4.0 (0.70) 36.0 (240) 3.5 (201)	3.9 (0.68) 45.0 (210) 1.5 (96)	5.0 (0.88) 50.0 (345) 1.5 (96)	4.2 (0.74) 60.0 (345) 2.5 (143)	5.0 (0.88) 60.0 (414) 1.1 (63)	4.2 (0.74) 60.0 (414) 2.5 (143)	5.0 (0.86) 75.0 (517) 1.1 (53)	4.3 (0.76) 75.0 (5.17) 2.5 (143)	100.0 (690) 1.1
Pa.e.m ⁸) Water absorption by total immension, max, volume % Dimensional stability	4.0	4.0	3.0 2.0	3.0 2.0	2.0	2.0	2.0	0.3 2.0	6.3 2.0	3.0 2.0	0.5 2.0	0.3	2.0	0.5	2.0	0.3	2.0	0.3 2.0
(change in dimen- sions), max,% Oxygen index, min, votume % Density, min, Butt ²	24.0 0.70 (12)	24.0 0.90 (16)	24.0 1.15 (18)	24.0 1.35 (22)	24.0	24.0 2.40 (38)	24.0 2.85 (46)	24.0	24.0 1.30 (21)	24.0 1.35 (22)	24.0 1.60 (26)	24.0 1.55 (25)	24.0 1.80 (29)	24.0 1.80 (29)	24.0 2.40 (38)	24.0 2.20 (36)	24.0 2.65 (46)	24.0 3.00 (40)

EPS R-Value Economical, Stable, Warranted

- EPS provided the most R value per dollar of any insulation
- EPS products do not have thermal drift; they do not lose R-value over time
- EPS R-values are warranted at the published values; the "full" R-value is covered for the entire warranty term

Moisture Resistance

15-Year In-Situ Research Shows EPS Outperforms XPS in R-Value Retention

Studies show that as much as 23% of energy loss from a structure can be attributed to a lack of insulation on below-grade foundations, crawl spaces and under slabs. Insulation R-value is directly correlated to maximum energy efficiency in a building envelope; higher R-values translate into increased savings. In below grade applications, foam insulation is exposed to moisture and could lose r-value over time if this moisture is absorbed.

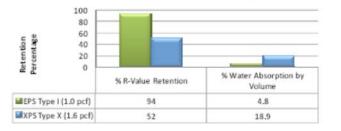
As shown in an independent, thrid-party test program expanded polystyrene (EPS) maintains its R-value even after long-term exposure in cold, wet Gimates. A competing insulation material, extruded polystyrene (XPS) was shown to have lost R-value over time. The results of this test program demonstrate that EPS insulation is a perfect tholes to reduce energy loss.

IN-SITU TEST RESULTS

In August 2008, independent testing⁴ evaluated the field performance of EPS and XPS insulation in a side-by-side, below grade application following a continuous 13-year installation period. EPS Type I and XPS Type X test samples were excavated from the exterior of a commercial building in St. Paul, MN at a depth of approximately 6 feet below grade.

Specimens were tested for thermal resistance using ASTM C318 "Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Apparatus" immediately after excavation. Moisture content was determined by measuring the sample weight at the time of removal and again after being over dried.

Excavation Site Minneapolis, MN Climate Zone 1



Side-by-Side Installation

Copyright GEPS Moldons Association 2008

In-Situ R-Value Retention & Water Absorption

The results demonstrate that EPS Type I outperforms XPS Type X in both R-value retention and decreased water absorption. Further, whereas the in-service R-value of the XPS insulation is reduced by hair, expanded polystyrene still delivers 94% of its specified, Rvalue of 8.6 per inch after 15 years. These long term performance advantages make EPS insulation a preferred choice when compared to the competition.

This testing further confirms that water absorption results determined using ASTM C272 cannot be correlated to the in-service performance of foam insulation. The main reason

test procedures call for partial or full submersion conditions which are not encountered in field applications. In fact, laborstory test methods were not developed for predicting actual performance, but were intended for use in specification as a means of comparing relative physical properties of different cellular plastics and for product evaluations and quality control.

for the lack of correlation is that the laboratory

To find out how EPS can meet your future project needs contact the closest EPS Molders Association member manufacturer. For a list of participating companies visit www.epsmolders.org or call (800) 607-8772.

Superior Moisture Resistance

	15	15 Yr. In-situ Test Results							
		sults xtraction	days @	after 30 72° F & R.H.	ASTM C578 Values				
	EPS	XPS	EPS	XPS	EPS	XPS			
R-Value/inch	3.4	2.6	3.7	2.8	3.6	5.0			
Moisture Content (Volume %)	4.8	18.9	0.7	15.7	4.0	0.1			

Unlike the Type I EPS, when exposed to dry conditions for four weeks, the XPS did not approach the values expected per ASTM C578, *Standard Specification for Rigid Polystyrene Thermal Insulation*.

Compressive Strength and Resistance

Don't Over Specify – match the compressive strength (psi) to your application

Example... Type I EPS @ 10-15 psi Has been used under roadways

EPS Market Segments

Insulation Applications Roofing Commercial Residential Wall Systems Sheathing **EIFS and One-Coat** Siding Backer & Profiles Cavity Wells SIPs Perimeter & Below Slab **Pre-cast panels Radiant Heating**

Non-Insulation Applications Geofoam

Highways & Bridges Lightweight Void Fill Levees Garden Roofing Pools and Pool Decks Concrete Block-outs Theaters & Stadiums Floatation Packaging

Roofing Applications

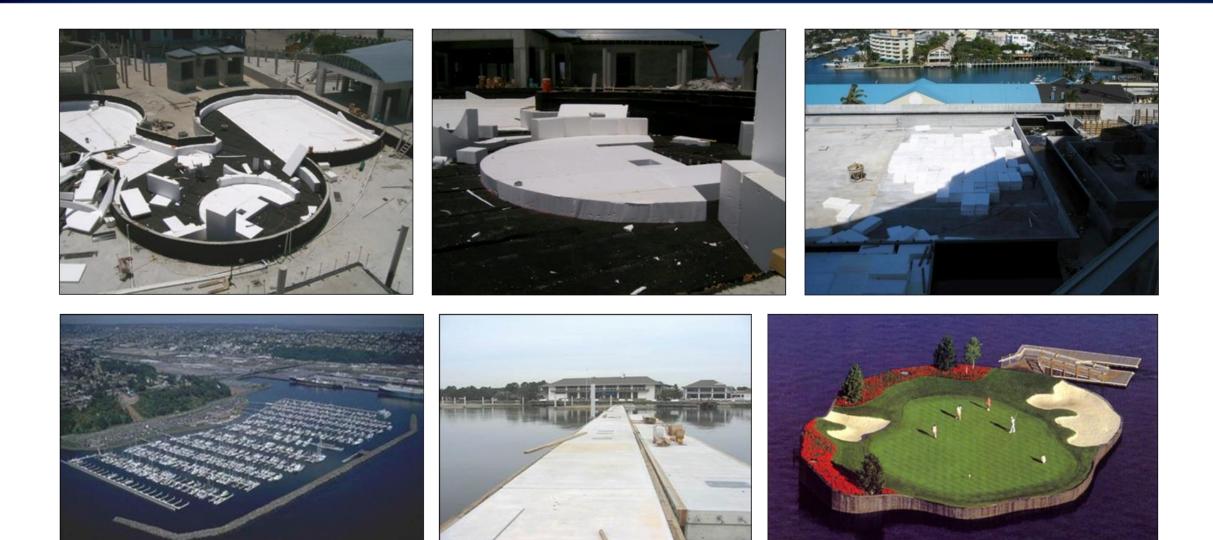


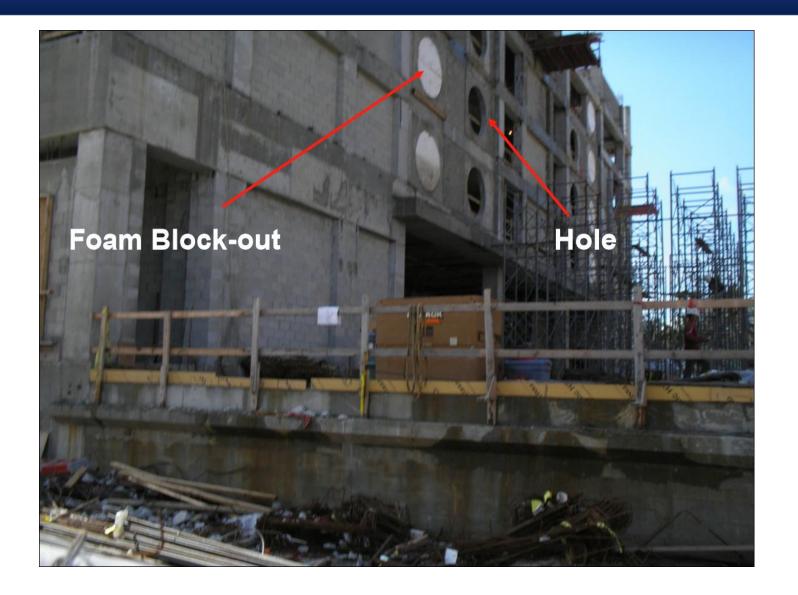
Wall Systems / Applications

Perimeter & Below slab

Geofoam – Lightweight Void Fill

Ramps, Driveways and Highway Systems





Pools, Pool Decks and Floatation


Concrete Block-outs

Retaining Walls

Theater / Stadium Seating

References

• EPSIA

www.EPSindustry.org

- EPS Industry Alliance
- Geofoam Facebook

Managed by all EPS Geofoam manufacturers as a resource for Q and A

Thank you for your time.

LINK TO TAKE 10-QUESTION QUIZ

you will provide your information and, upon passing quiz, a link will provide access to your participation certificate.

Insulfoam will submit AIA credits for those providing their member number.

Questions for Insulfoam? Contact us